Warning: file_put_contents(aCache/aDaily/post/opendatascience/-2330-2331-): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Data Science by ODS.ai 🦜 | Telegram Webview: opendatascience/2330 -
Telegram Group & Telegram Channel
βš™οΈ SWE-rebench: Nebius AI R&D team presents new dataset for SWE tasks.

Researchers built an automated system to collect and validate thousands of real-world tasks from GitHub, designed for training and evaluation of LLMs in software engineering.

Main features of the system:
1️⃣ Automatic data collection: Continuously extracts issue-PR pairs from Python repositories.
2️⃣ LLM-based environment setup: LLM analyzes repositories, creates install instructions, and updates them if errors happen.
3️⃣ Execution-based validation: Each task is tested by automatic setup, test run, and dependency freezing to make it reproducible.
4️⃣ LLM quality annotation: Tasks are labeled for clarity, difficulty, and test correctness to support filtering.

Result:
SWE-rebench dataset: 21,000+ ready-to-use interactive tasks.
Continuous updates: Fresh data is added regularly.
Transparent evaluation: Tasks are used for public SWE-rebench leaderboard.

πŸš€ SWE-rebench gives researchers and developers real and validated tasks to work with LLMs in SWE field.

Technical report: arXiv
Dataset: SWE-rebench



tg-me.com/opendatascience/2330
Create:
Last Update:

βš™οΈ SWE-rebench: Nebius AI R&D team presents new dataset for SWE tasks.

Researchers built an automated system to collect and validate thousands of real-world tasks from GitHub, designed for training and evaluation of LLMs in software engineering.

Main features of the system:
1️⃣ Automatic data collection: Continuously extracts issue-PR pairs from Python repositories.
2️⃣ LLM-based environment setup: LLM analyzes repositories, creates install instructions, and updates them if errors happen.
3️⃣ Execution-based validation: Each task is tested by automatic setup, test run, and dependency freezing to make it reproducible.
4️⃣ LLM quality annotation: Tasks are labeled for clarity, difficulty, and test correctness to support filtering.

Result:
SWE-rebench dataset: 21,000+ ready-to-use interactive tasks.
Continuous updates: Fresh data is added regularly.
Transparent evaluation: Tasks are used for public SWE-rebench leaderboard.

πŸš€ SWE-rebench gives researchers and developers real and validated tasks to work with LLMs in SWE field.

Technical report: arXiv
Dataset: SWE-rebench

BY Data Science by ODS.ai 🦜





Share with your friend now:
tg-me.com/opendatascience/2330

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Data Science by ODS ai 🦜 from sa


Telegram Data Science by ODS.ai 🦜
FROM USA